Forecasting VARs, Model Selection, and Shrinkage
نویسندگان
چکیده
This paper provides an empirical comparison of various selection and penalized regression approaches for forecasting with vector autoregressive systems. In particular, we investigate the effect of the system size as well as the effect of various prior specification choices on the relative and overall forecasting performance of the methods. The data set is a typical macroeconomic quarterly data set for the US. We find that these specification choices are crucial for most methods. Conditional on certain choices, the variation across different approaches is relatively small. There are only a few methods which are not competitive under any scenario. For single series, we find that increasing the system size can be helpful depending on the employed shrinkage method. JEL classification: C32, C53, E47
منابع مشابه
Prior selection for panel vector autoregressions
There is a vast literature that speci es Bayesian shrinkage priors for vector autoregressions (VARs) of possibly large dimensions. In this paper I argue that many of these priors are not appropriate for multi-country settings, which motivates me to develop priors for panel VARs (PVARs). The parametric and semi-parametric priors I suggest not only perform valuable shrinkage in large dimensions, ...
متن کاملUsing VARs and TVP-VARs with Many Macroeconomic Variables
This paper discusses the challenges faced by the empirical macroeconomist and methods for surmounting them. These challenges arise due to the fact that macroeconometric models potentially include a large number of variables and allow for time variation in parameters. These considerations lead to models which have a large number of parameters to estimate relative to the number of observations. A...
متن کاملBayesian Rank Selection in Multivariate Regression
Estimating the rank of the coefficient matrix is a major challenge in multivariate regression, including vector autoregression (VAR). In this paper, we develop a novel fully Bayesian approach that allows for rank estimation. The key to our approach is reparameterizing the coefficient matrix using its singular value decomposition and conducting Bayesian inference on the decomposed parameters. By...
متن کاملForecasting with Small Macroeconomic VARs in the Presence of Instabilities
Small–scale VARs are widely used in macroeconomics for forecasting U.S. output, prices, and interest rates. However, recent work suggests these models may exhibit instabilities. As such, a variety of estimation or forecasting methods might be used to improve their forecast accuracy. These include using different observation windows for estimation, intercept correction, time–varying parameters, ...
متن کامل2011 / 22 VAR forecasting using Bayesian variable selection
This paper develops methods for automatic selection of variables in Bayesian vector autoregressions (VARs) using the Gibbs sampler. In particular, I provide computationally efficient algorithms for stochastic variable selection in generic linear and nonlinear models, as well as models of large dimensions. The performance of the proposed variable selection method is assessed in forecasting three...
متن کامل